Automated Feature Set Selection and Its Application to MCC Identification in Digital Mammograms for Breast Cancer Detection
نویسندگان
چکیده
We propose a fully automated algorithm that is able to select a discriminative feature set from a training database via sequential forward selection (SFS), sequential backward selection (SBS), and F-score methods. We applied this scheme to microcalcifications cluster (MCC) detection in digital mammograms for early breast cancer detection. The system was able to select features fully automatically, regardless of the input training mammograms used. We tested the proposed scheme using a database of 111 clinical mammograms containing 1,050 microcalcifications (MCs). The accuracy of the system was examined via a free response receiver operating characteristic (fROC) curve of the test dataset. The system performance for MC identifications was Az = 0.9897, the sensitivity was 92%, and 0.65 false positives (FPs) were generated per image for MCC detection.
منابع مشابه
Empirical Analysis of Supervised and Unsupervised Filter based Feature Selection Methods for Breast Cancer Classification from Digital Mammograms
In the design and development of an automated CAD tool for breast cancer detection and diagnosis, the various steps include enhancement, segmentation, feature extraction, feature selection and classification. The feature selection plays an important role in the design of the said CAD tool as it aims towards the redundant feature elimination and relevant feature selection. The selected feature s...
متن کاملH-BwoaSvm: A Hybrid Model for Classification and Feature Selection of Mammography Screening Behavior Data
Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could...
متن کاملImage Analysis and Understanding Techniques for Breast Cancer Detection from Digital Mammograms
In this chapter, an overview of recent developments in image analysis and understanding techniques for automated detection of breast cancer from digital mammograms is presented. The various steps in the design of an automated system (i.e. Computer Aided Detection [CADe] and Computer Aided Diagnostics (CADx)] include preparation of image database for classification, image pre-processing, mammogr...
متن کاملContrast Enhancement of Mammograms for Rapid Detection of Microcalcification Clusters
Introduction Breast cancer is one of the most common types of cancer among women. Early detection of breast cancer is the key to reducing the associated mortality rate. The presence of microcalcifications clusters (MCCs) is one of the earliest signs of breast cancer. Due to poor imaging contrast of mammograms and noise contamination, radiologists may overlook some diagnostic signs, specially t...
متن کاملEffective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks
Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2013